63 research outputs found

    Stochastic Optimal Investment Strategy for Net-Zero Energy Houses

    Full text link
    In this research, we investigate Net-Zero Energy Houses (ZEH), which harness regionally produced electricity from photovoltaic(PV) panels and fuel cells, integrating them into a local power system in pursuit of achieving carbon neutrality. This paper examines the impact of electricity sharing among users who are working towards attaining ZEH status through the integration of PV panels and battery storage devices. We propose two potential scenarios: the first assumes that all users individually invest in storage devices, hence minimizing their costs on a local level without energy sharing; the second envisions cost minimization through the collective use of a shared storage device, managed by a central manager. These two scenarios are formulated as a stochastic convex optimization and a cooperative game, respectively. To tackle the stochastic challenges posed by multiple random variables, we apply the Monte Carlo sample average approximation (SAA) to the problems. To demonstrate the practical applicability of these models, we implement the proposed scenarios in the Jono neighborhood in Kitakyushu, Japan.Comment: Submitted to IET Renewable Power Generatio

    Estimation of above-ground biomass of a tropical forest in Northern Borneo using high-resolution satellite image

    Get PDF
    Estimating above-ground biomass is important in establishing an applicable methodology of Measurement, Reporting and Verification (MRV) System for Reducing Emissions from Deforestation and Forest Degradation-Plus (REDD+). We developed an estimation model of diameter at breast height (DBH) from IKONOS-2 image that led to above-ground biomass estimation (AGB). The IKONOS image was preprocessed with dark object subtraction and topographic effect correction prior to watershed segmentation for tree crown delineation. Compared to the field observation, the overall segmentation accuracy was 64%. Crown detection percent had a strong negative correlation to tree density. In addition, satellite-based crown area had the highest correlation with the field measured DBH. We then developed the DBH allometric model that explained 74% of the data variance. In average, the estimated DBH was very similar to the measured DBH as well as for AGB. Overall, this method can potentially be applied to estimate AGB over a relatively large and remote tropical forest in Northern Borneo

    Real time assessment of surface interactions with a titanium passivation layer by surface plasmon resonance

    Get PDF
    Due to the high corrosion resistance and strength to density ratio titanium is widely used in industry, and also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, similarly to titanium medical devices. Our "Ti-SPR sensor" enables analysis of biomolecule interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of a titanium passivation layer exposed to acid was monitored in real time. The Ti-SPR sensor can also accurately measure the time-dependence of protein adsorption onto the titanium passivation layer at sub-nanogram per square millimeter accuracy. Besides such SPR analyses, SPR imaging (SPRI) enables real time assessment of chemical surface processes that occur simultaneously at "multiple independent spots" on the Ti-SPR sensor, such as acid corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields

    Time-resolved serial femtosecond crystallography reveals early structural changes in channelrhodopsin

    Get PDF
    X線自由電子レーザーを用いて、光照射によるチャネルロドプシンの構造変化の過程を捉えることに成功. 京都大学プレスリリース. 2021-03-26.Channelrhodopsins (ChRs) are microbial light-gated ion channels utilized in optogenetics to control neural activity with light . Light absorption causes retinal chromophore isomerization and subsequent protein conformational changes visualized as optically distinguished intermediates, coupled with channel opening and closing. However, the detailed molecular events underlying channel gating remain unknown. We performed time-resolved serial femtosecond crystallographic analyses of ChR by using an X-ray free electron laser, which revealed conformational changes following photoactivation. The isomerized retinal adopts a twisted conformation and shifts toward the putative internal proton donor residues, consequently inducing an outward shift of TM3, as well as a local deformation in TM7. These early conformational changes in the pore-forming helices should be the triggers that lead to opening of the ion conducting pore

    Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+

    Get PDF
    Measuring forest degradation and related forest carbon stock changes is more challenging than measuring deforestation since degradation implies changes in the structure of the forest and does not entail a change in land use, making it less easily detectable through remote sensing. Although we anticipate the use of the IPCC guidance under the United Framework Convention on Climate Change (UNFCCC), there is no one single method for monitoring forest degradation for the case of REDD+ policy. In this review paper we highlight that the choice depends upon a number of factors including the type of degradation, available historical data, capacities and resources, and the potentials and limitations of various measurement and monitoring approaches. Current degradation rates can be measured through field data (i.e. multi-date national forest inventories and permanent sample plot data, commercial forestry data sets, proxy data from domestic markets) and/or remote sensing data (i.e. direct mapping of canopy and forest structural changes or indirect mapping through modelling approaches), with the combination of techniques providing the best options. Developing countries frequently lack consistent historical field data for assessing past forest degradation, and so must rely more on remote sensing approaches mixed with current field assessments of carbon stock changes. Historical degradation estimates will have larger uncertainties as it will be difficult to determine their accuracy. However improving monitoring capacities for systematic forest degradation estimates today will help reduce uncertainties even for historical estimates
    corecore